Zadacha Kuznecov Predely 13-8

Материал из PlusPi
Перейти к: навигация, поиск

Условие задачи[править]

Вычислить предел функции:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://pluspi.miraheze.org/api/rest_v1/»:): {\displaystyle \lim_{x\to 2\pi } \frac{\left(x-2\pi \right)^2}{\operatorname{tg}{\left(\cos {x}-1\right)}}}

Решение[править]

Замена:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://pluspi.miraheze.org/api/rest_v1/»:): {\displaystyle x=y+2\pi \Rightarrow y=x -2\pi}
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://pluspi.miraheze.org/api/rest_v1/»:): {\displaystyle x\to 2\pi \Rightarrow y \to 0}

Получаем:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://pluspi.miraheze.org/api/rest_v1/»:): {\displaystyle \lim_{x\to 2\pi } \frac{\left(x-2\pi \right)^2}{\operatorname{tg}{\left(\cos {x}-1\right)}} = \lim_{y\to 0} \frac{\left((y+2\pi)-2\pi \right)^2}{\operatorname{tg}{\left(\cos {(y+2\pi)}-1\right)}} =}
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://pluspi.miraheze.org/api/rest_v1/»:): {\displaystyle = \lim_{y\to 0} \frac{y^2}{\operatorname{tg}{\left(\cos {y}-1\right)}} =}

Воспользуемся заменой эквивалентных бесконечно малых:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://pluspi.miraheze.org/api/rest_v1/»:): {\displaystyle \operatorname{tg}{\left(\cos {y}-1\right)} \sim \left(\cos {y}-1\right)} , при Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://pluspi.miraheze.org/api/rest_v1/»:): {\displaystyle y \to 0 \left(\left(\cos {y}-1\right)\to 0\right)}

Получаем:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://pluspi.miraheze.org/api/rest_v1/»:): {\displaystyle = \lim_{y\to 0} \frac{y^2}{\cos {y}-1} =}

Воспользуемся заменой эквивалентных бесконечно малых:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://pluspi.miraheze.org/api/rest_v1/»:): {\displaystyle 1 - \cos {y} \sim \frac{y^2}{2}} , при Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://pluspi.miraheze.org/api/rest_v1/»:): {\displaystyle y \to 0}

Получаем:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://pluspi.miraheze.org/api/rest_v1/»:): {\displaystyle = \lim_{y\to 0} \frac{y^2}{-\frac{y^2}{2}} = \lim_{y\to 0} \frac{1}{-\frac{1}{2}} = -2}